Homework 2, due 9/9

1. (a) Verify that the series defining the complex exponential function

$$
\exp (z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

has radius of convergence ∞.
(b) Show that $\exp ^{\prime}(z)=\exp (z)$.
2. Suppose that $\gamma:[0,1] \rightarrow \mathbf{C}$ is a differentiable curve parametrizing the boundary $\partial \Omega$ of an open set $\Omega \subset \mathbf{C}$ counterclockwise. Show that the area $A(\Omega)$ is given by

$$
A(\Omega)=\frac{1}{2 i} \int_{\gamma} \bar{z} d z
$$

3. Compute the degree $\operatorname{Deg}(f, 0)$ of the function $f(z)=z^{n}$ with respect to the origin, where the degree is defined by

$$
\operatorname{Deg}(f, 0)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

with γ denoting the unit circle counterclockwise.
4. Let $f: \mathbf{C} \backslash\{0\} \rightarrow \mathbf{C}$ be defined by $f(z)=z^{-n}$ for an integer n. Show that there exists a holomorphic F on $\mathbf{C} \backslash\{0\}$ with $F^{\prime}=f$ if and only if $n \neq 1$.
5. Show that there is a holomorphic function F on the disk $D(1,1)$ such that $F^{\prime}(z)=1 / z$.
6. Let $\gamma:[0,1] \rightarrow \mathbf{C}$ be a piecewise differentiable path such that $\gamma(0)=2$, and $\gamma^{-1}([0, \infty))=\{0\}$ (i.e. γ only meets the non-negative real axis once, at $t=0)$. Prove that

$$
0<\left|\operatorname{Im}\left[\int_{0}^{1} \frac{\gamma^{\prime}(t)}{\gamma(t)} d t\right]\right|<2 \pi
$$

7. Let $\Omega \subset \mathbf{C}$ be connected, and $f: \Omega \rightarrow \mathbf{C}$ a non-constant holomorphic function. Let $U \Subset \Omega$ be such that $|f|$ is constant on ∂U. Show that f must have a zero in U.
8. Prove that if $\Omega \subset \mathbf{C}$ and $f: \Omega \rightarrow \mathbf{C}$ is holomorphic, then $f^{-1}(\mathbf{R})$ cannot be a non-empty compact subset of Ω.
